Utente:Lo Stronzo di mamma tua/Sandbox: differenze tra le versioni

Vai alla navigazione Vai alla ricerca
Contenuto aggiunto Contenuto cancellato
Riga 17: Riga 17:
'''Dimostrazione''': Sia per assurdo <math>i_p^* \in I_p \setminus P_{np}</math>. Consideriamo ora l'insieme <math>I_c^{n} = \{i_p^*,i_1,i_2,...,i_n\} \subseteq I_c </math>, con <math>i_j \in I_p, j=1,...,n.</math> Se ora <math>I_c^n \subseteq P_{np}</math>, allora <math>i_p^* \in P_{np}</math> contro le ipotesi. Se <math>I_c^n \nsubseteq P_{np}</math>, considero <math>I_c^{n+1}=\{i_p^*,i_1,...,1_n,i_{n+1}\}</math>. Se ora <math>I_p^{n+1} \subseteq P_{np} \implies i_p^* \in P_{np}</math>, assurdo, altrimenti si considera <math>I_c^{n+2}=\{i_p^*,i_1,...,i_{n+1},i_{n+2}\}</math> e si ragiona in modo analogo. CVD.
'''Dimostrazione''': Sia per assurdo <math>i_p^* \in I_p \setminus P_{np}</math>. Consideriamo ora l'insieme <math>I_c^{n} = \{i_p^*,i_1,i_2,...,i_n\} \subseteq I_c </math>, con <math>i_j \in I_p, j=1,...,n.</math> Se ora <math>I_c^n \subseteq P_{np}</math>, allora <math>i_p^* \in P_{np}</math> contro le ipotesi. Se <math>I_c^n \nsubseteq P_{np}</math>, considero <math>I_c^{n+1}=\{i_p^*,i_1,...,1_n,i_{n+1}\}</math>. Se ora <math>I_p^{n+1} \subseteq P_{np} \implies i_p^* \in P_{np}</math>, assurdo, altrimenti si considera <math>I_c^{n+2}=\{i_p^*,i_1,...,i_{n+1},i_{n+2}\}</math> e si ragiona in modo analogo. CVD.


'''Proposizione 1''': Se <math>P_{nc}, I_c \ne \emptyset, P_{np}\cap I_c \ne \emptyset </math>.
'''Lemma 2''': Se <math>P_{nc}, I_c \ne \emptyset, P_{np}\cap I_c \ne \emptyset </math>.


'''Dimostrazione''': <math>P_{np} \ne \emptyset \implies \exists p \in P_{np}.</math> In particolare <math>p \in P_{np} \cup I_c = P_{np}</math> per il Lemma 1. Ora, se <math>\forall p \in P_{np}, p \in P_{np} \setminus I_c</math>, allora sarebbe <math>I_p \cap P_{np} = \emptyset \implies P_{np}=\emptyset</math> perché per definizione <math>I_c \ne \emptyset</math>, ma questo è assurdo perché <math>P_{np}\ne\emptyset</math> per ipotesi. Allora <math>\exists p \in P_{np} \cap I_c</math>, ed in particolare <math>P_{np}\cap I_c \ne \emptyset</math>. CVD.
'''Dimostrazione''': <math>P_{np} \ne \emptyset \implies \exists p \in P_{np}.</math> In particolare <math>p \in P_{np} \cup I_c = P_{np}</math> per il Lemma 1. Ora, se <math>\forall p \in P_{np}, p \in P_{np} \setminus I_c</math>, allora sarebbe <math>I_p \cap P_{np} = \emptyset \implies P_{np}=\emptyset</math> perché per definizione <math>I_c \ne \emptyset</math>, ma questo è assurdo perché <math>P_{np}\ne\emptyset</math> per ipotesi. Allora <math>\exists p \in P_{np} \cap I_c</math>, ed in particolare <math>P_{np}\cap I_c \ne \emptyset</math>. CVD.
Riga 23: Riga 23:
'''Definizione 3''': Si definisce ''fermata della metropolitana'', e si indica con <math>F_m</math>, una famiglia di insiemi di [[punto di accumulazione|punti di accumulazione]] per un sottoinsieme non vuoto <math>S \subseteq P_{np}</math>.
'''Definizione 3''': Si definisce ''fermata della metropolitana'', e si indica con <math>F_m</math>, una famiglia di insiemi di [[punto di accumulazione|punti di accumulazione]] per un sottoinsieme non vuoto <math>S \subseteq P_{np}</math>.


'''Lemma 2''': <math>F_m</math> è sia aperto che chiuso.
'''Proposizione 1''': <math>F_m</math> è sia aperto che chiuso.


'''Dimostrazione''': Com'è noto, il sottoinsieme di cardinalità maggiore contenuto in un insieme dato è l'insieme stesso: sia dunque <math>max (F_m) = \{X \in F_m : |X|= max |X_i|, i = 0,...,|F_m|\}</math> l'insieme di cardinalità massima in <math>F_m</math>. È immediato osservare che tale insieme sarà proprio <math>F_m</math>, per le ragioni sopraesposte. Siccome da ogni copertura aperta di <math>F_m</math> si può estrarre una sottocopertura finita per le proprietà della piastrellatura metropolitana, <math>F_m</math> è compatto. Dunque per il [[teorema di Heine-Cantor]] la funzione orario di esercizio <math>o : [06.30, 02.30] \rightarrow F_m</math> è uniformemente continua. Dunque per il [[teorema di Weierstrass]] <math>\exists t \in dom(o) : o(t)=max(F_m)=F_m</math>. Siccome quando <math>o(t)=F_m</math> c'è un tale casino che <math>F_m = F_m^o</math>, <math>F_m</math> è aperto. Ma per costruzione cittadina anche <math>F_m^c</math> è aperto; ne segue che <math>F_m</math> è sia aperto che chiuso. CVD.
'''Dimostrazione''': Com'è noto, il sottoinsieme di cardinalità maggiore contenuto in un insieme dato è l'insieme stesso: sia dunque <math>max (F_m) = \{X \in F_m : |X|= max |X_i|, i = 0,...,|F_m|\}</math> l'insieme di cardinalità massima in <math>F_m</math>. È immediato osservare che tale insieme sarà proprio <math>F_m</math>, per le ragioni sopraesposte. Siccome da ogni copertura aperta di <math>F_m</math> si può estrarre una sottocopertura finita per le proprietà della piastrellatura metropolitana, <math>F_m</math> è compatto. Dunque per il [[teorema di Heine-Cantor]] la funzione "orario di esercizio" <math>o : [06.30, 02.30] \rightarrow F_m</math> è uniformemente continua. Dunque per il [[teorema di Weierstrass]] <math>\exists t_m \in dom(o) : o(t)=max(F_m)=F_m</math>. Siccome quando <math>o(t)=F_m</math> c'è un tale casino che <math>F_m = F_m^o</math>, <math>F_m</math> è aperto. Ma per costruzione cittadina anche <math>F_m^c</math> è aperto; ne segue che <math>F_m</math> è sia aperto che chiuso. CVD.


'''Proposizione 2''': Se <math>F_m</math> aperto, <math>\exists P_{np} \in F_m</math>
'''Proposizione 2''': Se <math>F_m</math> aperto, <math>\exists P_{np} \in F_m</math>


'''Dimostrazione''': Nella dimostrazione della Proposizione 1 abbiamo già avuto modo di definire la funzione <math>o:[06.30,02.30] \rightarrow F_m</math> che ammette massimo <math>F_m</math> al tempo <math>t_m</math> quando <math>F_m</math> è aperto. Siccome <math>F_m</math> è compatto, allora è chiuso e limitato, perciò <math>o</math> è monotona. Nel momento <math>t_m, max(o)=F_m</math>, ogni elemento di <math>F_m</math> è di accomulazione. Ma per definizione di <math>F_m</math> gli elementi stessi sono insiemi di punti di accumulazione, quindi nel momento <math>t_m</math> la situazione in <math>F_m</math> diventa quasi insostenibile, e, ad uno sguardo disperato, emerge <math>P_{np} \in F_m</math>. CVD.
'''Dimostrazione''':


'''Definizione 4''': Si definisce ''ingegnere'' la derivata prima dell'ingegnere in potenza rispetto al tempo. Un ingegnere continua a non sapere la matematica e a credere che la [[Caratteristica (algebra)|caratteristica]] di un [[Anello (algebra)|anello]] sia la quantità del materiale di cui esso è fatto, ma è dotato di un attestato che certifica l'esistenza di un [[isomorfismo]] tra se stesso e il succitato cucchiano da tè. Pur ignorando, naturalmente, cosa sia un isomorfismo.
'''Definizione 4''': Si definisce ''ingegnere'' la derivata prima dell'ingegnere in potenza rispetto al tempo. Un ingegnere continua a non sapere la matematica e a credere che la [[Caratteristica (algebra)|caratteristica]] di un [[Anello (algebra)|anello]] sia la quantità del materiale di cui esso è fatto, ma è dotato di un attestato che certifica l'esistenza di un [[isomorfismo]] tra se stesso e il succitato cucchiano da tè. Pur ignorando, naturalmente, cosa sia un isomorfismo.

Versione delle 23:20, 14 mar 2013

Teorema di densità degli ingegneri

Definizione 1: Si definisce ingegnere in potenza, e si indica con , un essere umano dotato delle conoscenze matematiche di un cucchiaino da tè e che rispetti le seguenti condizioni:

  • Il grado di verità di una frase dipende da quanto materiale serve per costruire un esempio, che comunque si costruisce solo se può avere un utilizzo pratico.
  • Un'equazione di grado n ha un certo numero di soluzioni, tutte considerabili più o meno intere.

Si indica con l'insieme degli ingegneri in potenza di un centro abitato . Appare altresì evidente che sempre, giacché .

Definizione 2: Si definisce partizione non palese di un centro abitato , e si indica con , un qualsiasi insieme di persone la cui cardinalità non sia evidente al primo sguardo.

Lemma 1: se


Dimostrazione: Sia per assurdo . Consideriamo ora l'insieme , con Se ora , allora contro le ipotesi. Se , considero . Se ora , assurdo, altrimenti si considera e si ragiona in modo analogo. CVD.

Lemma 2: Se Errore del parser (SVG (MathML può essere abilitato tramite plug-in del browser): risposta non valida ("Math extension cannot connect to Restbase.") dal server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{nc}, I_c \ne \emptyset, P_{np}\cap I_c \ne \emptyset } .

Dimostrazione: In particolare per il Lemma 1. Ora, se , allora sarebbe perché per definizione , ma questo è assurdo perché per ipotesi. Allora , ed in particolare . CVD.

Definizione 3: Si definisce fermata della metropolitana, e si indica con , una famiglia di insiemi di punti di accumulazione per un sottoinsieme non vuoto .

Proposizione 1: è sia aperto che chiuso.

Dimostrazione: Com'è noto, il sottoinsieme di cardinalità maggiore contenuto in un insieme dato è l'insieme stesso: sia dunque l'insieme di cardinalità massima in . È immediato osservare che tale insieme sarà proprio , per le ragioni sopraesposte. Siccome da ogni copertura aperta di si può estrarre una sottocopertura finita per le proprietà della piastrellatura metropolitana, è compatto. Dunque per il teorema di Heine-Cantor la funzione "orario di esercizio" è uniformemente continua. Dunque per il teorema di Weierstrass . Siccome quando c'è un tale casino che , è aperto. Ma per costruzione cittadina anche è aperto; ne segue che è sia aperto che chiuso. CVD.

Proposizione 2: Se aperto,

Dimostrazione: Nella dimostrazione della Proposizione 1 abbiamo già avuto modo di definire la funzione che ammette massimo al tempo quando è aperto. Siccome è compatto, allora è chiuso e limitato, perciò è monotona. Nel momento , ogni elemento di è di accomulazione. Ma per definizione di gli elementi stessi sono insiemi di punti di accumulazione, quindi nel momento la situazione in diventa quasi insostenibile, e, ad uno sguardo disperato, emerge . CVD.

Definizione 4: Si definisce ingegnere la derivata prima dell'ingegnere in potenza rispetto al tempo. Un ingegnere continua a non sapere la matematica e a credere che la caratteristica di un anello sia la quantità del materiale di cui esso è fatto, ma è dotato di un attestato che certifica l'esistenza di un isomorfismo tra se stesso e il succitato cucchiano da tè. Pur ignorando, naturalmente, cosa sia un isomorfismo.

Teorema (debole) di densità:

Dimostrazione:

Sia l'insieme di tutte le persone. Vale il seguente

Teorema (forte) di densità: L'insieme degli ingegneri è denso in .

Dimostrazione: