Utente:Lo Stronzo di mamma tua/Sandbox: differenze tra le versioni

Nessun oggetto della modifica
Riga 16:
'''Dimostrazione''': Sia per assurdo <math>i_p^* \in I_p \setminus P_{np}</math>. Consideriamo ora l'insieme <math>I_c^{n} = \{i_p^*,i_1,i_2,...,i_n\} \subseteq I_c </math>, con <math>i_j \in I_p, j=1,...,n.</math> Se ora <math>I_c^n \subseteq P_{np}</math>, allora <math>i_p^* \in P_{np}</math> contro le ipotesi. Se <math>I_c^n \nsubseteq P_{np}</math>, considero <math>I_c^{n+1}=\{i_p^*,i_1,...,1_n,i_{n+1}\}</math>. Se ora <math>I_p^{n+1} \subseteq P_{np} \implies i_p^* \in P_{np}</math>, assurdo, altrimenti si considera <math>I_c^{n+2}=\{i_p^*,i_1,...,i_{n+1},i_{n+2}\}</math> e si ragiona in modo analogo. CVD.
 
'''Lemma 2''': Se <math>P_{nc}, I_c \ne \emptyset, P_{np}\cap I_c \ne \emptyset </math>.
 
'''Dimostrazione''': <math>P_{np} \ne \emptyset \implies \exists p \in P_{np}.</math> In particolare <math>p \in P_{np} \cup I_c = P_{np}</math> per il Lemma 1. Ora, se <math>\forall p \in P_{np}, p \in P_{np} \setminus I_c</math>, allora sarebbe <math>I_p \cap P_{np} = \emptyset \implies P_{np}=\emptyset</math> perché per definizione <math>I_c \ne \emptyset</math>, ma questo è assurdo perché <math>P_{np}\ne\emptyset</math> per ipotesi. Allora <math>\exists p \in P_{np} \cap I_c</math>, ed in particolare <math>P_{np}\cap I_c \ne \emptyset</math>. CVD.